Make your own free website on Tripod.com
 
The periodic law requires obviousness

 

There are three basic modes of functional associations representation known in science: a) analytical, b) graphic, c) tabular. 

From the moment of its statement the periodic law required tools of expression. The table was chosen as the basic tool. 

There were many attempts to find an adequate form, visual representation of the law. More than 500 modifications of the periodic system are known today. Tables (> 400) predominate among them; the remaining images are various geometrical figures, analytical curves and so on. [2] [See, for example, [10]. 

The great variety is explained, obviously, not only by supplement of the system with new elements, but also by the objective difficulties of quasiperiodic structure representation. 

In most of periodic objects and events observed in nature, (for example, segmented worms, striated  muscle, oscillation of a pendulum, rhythm of heart muscle contraction, change of time of day, seasons of year and so forth), the length of periods is constant or it increases in regular intervals in an arithmetical or geometrical progression, (some patterns on plants or spiral shells of some chambered mollusks). In the periodic law modification of period length is a variable value. The length of periods in the system composes neither a geometrical nor an arithmetical progression. This variable submits to the more complicated nonlinear association based on the electronic configuration of an atom. 

The difficulties at construction of the periodic system of elements remind, from my point of view, of a packing problem. How to pack the things - periods (for example, books of a different format) on shelfs of afixed length? Hydrogen (H) and helium (He) cannot fill a line of the first period of the traditional table (even if hydrogen is written twice). With magnification of the period number the arrangement of elements in its lines becomes tighter. The lanthanides and the actinides cannot be laid (squeezed) at all into standard formats and are born outside of the table. If we speak about theoretically predicted superheavy elements, the problem of their arrangement is even more aggravated (complicated).
 

Extended Periodic Table

 
  IA   
1
IIA    IIIA  IVA  VA  VIA VIIA  2
He 
2 3
Li
4
Be
  5
B
6
C
7
N
8
O
9
F
10
Ne
11
Na 
12
Mg 
IIIB  IVB  VB  VIB  VIIB  VIII  IB  IB  13
Al 
14
Si 
15
16
17
Cl 
18
Ar 
19
20
Ca 
21
Sc 
22
Ti 
23
24
Cr 
25
Mn 
26
Fe 
27
Co 
28
Ni 
29
Cu 
30
Zn 
31
Ga 
32
Ge 
33
As 
34
Se 
35
Br 
36
Kr 
37
Rb 
38
Sr 
39
40
Zr 
41
Nb 
42
Mo 
43
Tc 
44
Ru 
45
Rh 
46
Pd 
47
Ag 
48
Cd 
49
In 
50
Sn 
51
Sb 
52
Te 
53
54
Xe
55
Cs 
56
Ba 
57
La 
72
Hf 
73
Ta 
74
75
Re 
76
Os 
77
Ir 
78
Pt 
79
Au 
80
Hg 
81
Tl 
82
Pb 
83
Bi 
84
Po 
85
At 
86
Rn 
87
Fr 
88
Ra 
89
Ac 
104
Rf 
105
Ha 
106
Sg 
107
Ns 
108
Hs 
109
Mt 
110
Uun 
111
Uuu 
112
Uub 
113
Uut 
114
Uuq 
115
Uup 
116
Uuh 
117
Uus 
118
Uuo 
119
Uue 
120
Ubn 
121
Ubu 
154
Upq 
155
Upp 
156
Uph 
157
Ups 
158
Upo 
159
Upe 
160
Uhn 
161
Uhu 
162
Uhb 
163
Uht 
164
Uhq 
165
Uhp 
166
Uhh 
167
Uhs 
168
Uho 
  58
Ce 
59
Pr 
60
Nd 
61
Pm 
62
Sm 
63
Eu 
64
Gd 
65
Tb 
66
Dy 
67
Ho 
68
Er 
69
Tm 
70
Yb 
71
Lu 
 
  90
Th 
91
Pa 
92
93
Np 
94
Pu 
95
Am 
96
Cm 
97
Bk 
98
Cf 
99
Es 
100
Fm 
101
Md 
102
No 
103
Lr 
 
  122
Ubb 
123
Ubt 
124
Ubq 
125
Ubp 
126
Ubh 
127
Ubs 
128
Ubo 
129
Ube 
130
Utn 
131
Utu 
132
Utb 
133
Utt 
134
Utq 
153
Upt 
 
135
Utp 
136
Uth 
137
Uts 
138
Uto 
139
Ute 
140
Uqn 
141
Uqu 
142
Uqb 
143
Uqt 
144
Uqq 
145
Uqp 
146
Uqh 
147
Uqs 
148
Uqo 
149
Uqe 
150
Upn 
151
Upu 
152
Upb 

Figure 1.This periodic table is extended to include element 168. 
The elements 113, 115, 117, and above 118 have not yet been 
proven to exist, they have only generic names and symbols.

Materials of the site [10] are used (adapted) by creation of the table. The length of periods  - is not a simply nonconstant magnitude - this magnitude itself varies periodically. In each even period one observes its integration on the progressively growing magnitude equal to double odd number {6, 10, 14..., 2 (2n-1)...); n = 2, 3, 4...}.
 

NEXT

VisMath HOME